
   

 
eProsima  Fast RTPS User Manual  1 

 

Fast RTPS v1.2.0 

 

User Manual 

 

 

eProsima 

Proyectos y Sistemas de Mantenimiento SL 

Ronda del poniente 16 – Bajo K 

28760 Tres Cantos Madrid 

Tel: + 34 91 804 34 48 

info@eProsima.com – www.eProsima.com 

Trademarks 

eProsima is a trademark of Proyectos y Sistemas de Mantenimiento SL. All other trademarks used in this 

document are the property of their respective owners. 

License 

eProsima Fast RTPS is licensed under Apache License 2.0 

Technical Support 

∙ Phone: +34 91 804 34 48 

Email: Support@eProsima.com 

 

  

mailto:info@eProsima.com
http://www.eprosima.com/
mailto:Support@eProsima.com


   

 
eProsima  Fast RTPS User Manual  2 

 

Contents 
Introduction ....................................................................................................................................................... 4 

What is RTPS? ................................................................................................................................................ 4 

What is eProsima Fast RTPS? ........................................................................................................................ 4 

Reference Material ........................................................................................................................................ 4 

Document Organization ................................................................................................................................ 5 

Getting Started .................................................................................................................................................. 6 

Introduction to the Real Time Publish Subscribe (RTPS) Protocol ................................................................ 6 

Building your first Application ....................................................................................................................... 7 

Library Overview ................................................................................................................................................ 8 

Threads .......................................................................................................................................................... 9 

Events ............................................................................................................................................................ 9 

Objects and Data Structures ............................................................................................................................ 10 

Publisher Subscriber Module .................................................................................................................. 10 

RTPS Module ............................................................................................................................................ 10 

Publisher - Subscriber Layer ............................................................................................................................ 12 

Domain ........................................................................................................................................................ 12 

Participant ................................................................................................................................................... 12 

Publisher ...................................................................................................................................................... 12 

Publisher Configuration ........................................................................................................................... 12 

Publisher Callback .................................................................................................................................... 13 

Subscriber .................................................................................................................................................... 14 

Subscriber configuration ......................................................................................................................... 14 

Subscriber Callbacks ................................................................................................................................ 14 

Writer - Reader Layer ...................................................................................................................................... 15 

RTPSDomain ................................................................................................................................................ 15 

RTPSParticipant ........................................................................................................................................... 15 

Endpoint registration ............................................................................................................................... 15 

RTPSWriter .................................................................................................................................................. 16 

Writer History .......................................................................................................................................... 16 

Writer Attributes ..................................................................................................................................... 16 

Writer History Attributes ......................................................................................................................... 16 

Sending Data with a RTPSWriter ............................................................................................................. 16 

Matched readers ..................................................................................................................................... 17 

RTPSReader ................................................................................................................................................. 18 

Reader History ......................................................................................................................................... 18 



   

 
eProsima  Fast RTPS User Manual  3 

ReaderAttributes ..................................................................................................................................... 18 

ReaderHistoryAttributes .......................................................................................................................... 18 

Reading data from a RTPSReader ............................................................................................................ 18 

Receving data with a ReaderListener ...................................................................................................... 19 

Callbacks on builtin readers ..................................................................................................................... 19 

Transport Layer and Network configuration ............................................................................................... 20 

Configuring Transport Layers .................................................................................................................. 20 

Automatic code generation ............................................................................................................................. 21 

FASTRTPSGEN use........................................................................................................................................ 21 

FASTRTPSGEN output .................................................................................................................................. 21 

Executable use ............................................................................................................................................. 21 

Advanced Topics .............................................................................................................................................. 22 

User defined QoS policies ............................................................................................................................ 22 

Time-Based Filter and Content-Based Filter ............................................................................................ 22 

Ownership Strength ................................................................................................................................. 22 

Deadline ................................................................................................................................................... 22 

Large Data .................................................................................................................................................... 23 

Flow Control ................................................................................................................................................ 24 

Manual Type Definition ............................................................................................................................... 25 

 

 
 

  



   

 
eProsima  Fast RTPS User Manual  4 

Introduction 

What is RTPS? 
Real-Time Publish-Subscribe (RTPS) is the wire interoperability protocol defined for the Data Distribution 

Service (DDS) standard by the Object Management Group (OMG) consortium. It allows different 

implementations of the same communication structure to interoperate. This protocol standard is defined 

by the OMG in the specification document “The Real-Time Publish-Subscribe Wire Protocol, DDS 

Interoperability Wire Protocol Specification (DDS-RTPS)”. 

RTPS enables publisher-subscriber communications over unreliable transports such as UDP. It supports 

Unicast and Multicast with best-effort and reliable communication models.  

Since RTPS serves as the wire protocol for the DDS (Data Distribution Service) standard, the concepts of 

RTPS and DDS are closely related. 

What is eProsima Fast RTPS? 

eProsima Fast RTPS is a standalone C++ implementation of the last release of RTPS standard.  

Fast RTPS includes: 

● RTPS API to use the protocol and its features directly. 

● Simple Publication-Subscription API: A subset of DDS. 

● OMG IDL compiler: It generates Type Support for your types and Pub/Sub example code. 

 

Some key features are: 

● Configurable communication policies for real-time applications, with different levels of reliability. 

● Automatic discovery of new participants by other members of the network. 

● Modularity and scalability. 

● Network agnosticism: ability to use different transport layers and easily implement your own. 

● Fast concurrency through an efficient multithreaded model. 

Reference Material 

The following documents will be useful as you learn to use Fast RTPS: 

● OMG RGPS Specification. 

● OMG DDS Specification (To understand examples that operate at this level). 

● eProsima Fast RTPS API. 

● fastrtpsgen Manual. 

  

http://www.omg.org/spec/DDSI-RTPS/
http://www.omg.org/spec/DDSI-RTPS/
http://www.omg.org/spec/DDSI-RTPS/
http://www.omg.org/spec/DDSI-RTPS/
http://www.omg.org/spec/DDS/
http://www.omg.org/spec/DDSI-RTPS/
http://www.omg.org/spec/DDS/
http://www.eprosima.com/docs/fast-rtps/1.2.0/html/group___r_t_p_s___m_o_d_u_l_e.html
http://www.eprosima.com/docs/fast-rtps/1.1.0/pdf/FASTRTPSGEN_User_Manual.pdf


   

 
eProsima  Fast RTPS User Manual  5 

Document Organization 

The next section of this guide explains how to use Fast RTPS through practical examples. The rest consists 

of a high level view of the library, supporting the more detailed API reference. 

● Section 2 (Getting Started): Introduction to RTPS concepts and a simple application example. 

● Section 3 (Library Overview): A first look into the four main Fast RTPS modules. 

● Section 4 (Objects and Data Structures): Fast RTPS objects and how they relate to the standard. 

● Section 5 (Publisher - Subscriber Interface Layer): Description of the Publisher-Subscriber layer and 

examples of its use. 

● Section 6 (Writer - Reader Layer): For a finer control of the lower communication layers. 

● Section 7 (Automatic code generation): Brief look into the fastrtpsgen code generation tool 

  



   

 
eProsima  Fast RTPS User Manual  6 

Getting Started 

Introduction to the Real Time Publish Subscribe (RTPS) Protocol 
At the top of RTPS we find the Domain, which defines a separate plane of communication. A domain 

contains any number of Participants, elements capable of sending and receiving data. To do this, the 

participants use their Endpoints: 

● Reader: Endpoint able to receive data. 

● Writer: Endpoint able to send data. 

A Participant can have any number of writer and reader endpoints. 

 

 

 

 

 

 

 

 

Communication revolves around Topics, which define the data being exchanged. Topics don’t belong to any 

participant in particular; instead, all interested participants keep track of changes to the topic data, and 

make sure to keep each other up to date. 

The unit of communication is called a Change, which represents an update to a topic. Endpoints register 

these changes on their History, a data structure that serves as a cache for recent changes. 

When you publish a change through a writer endpoint, the following steps happen behind the scenes: 

● The change is added to the writer’s history cache. 

● The writer informs any readers it knows about. 

● Any interested (subscribed) readers request the change. 

● After receiving data, readers update their history cache with the new change. 

By choosing Quality of Service policies, you can affect how these history caches are managed in several 

ways, but the communication loop remains the same. 

 

  



   

 
eProsima  Fast RTPS User Manual  7 

Building your first Application 

To build a minimal application, you must first define the topic. You do this by writing an IDL (Interface 

Definition Language) file: 

// HelloWorld.idl: A simple topic containing a string. 
 
struct HelloWorld 
{ 
    string msg; 
}; 

Now we need to translate this file to something Fast RTPS understands. For this we have a code generation 

tool called fastrtpsgen, which can do two different things: 

● Generate C++ definitions for your custom topic. 

● Optionally, generate a working example that uses your topic data. 

You may want to check out the fastrtpsgen user manual for details, but for now the following commands 

will do: 

Linux fastrtpsgen -example x64Linux2.6gcc HelloWorld.idl 

Windows fastrtpsgen.bat -example x64Win64VS2015 HelloWorld.idl 

The -example option creates an example application, which you can use to spawn any number of publishers 

and a subscribers associated with your topic. 

To invoke a subscriber: 

Linux ./HelloWorldPublisherSubscriber subscriber 

Windows HelloWorldPublisherSubscriber.exe subscriber 

 

To invoke a publisher: 

Linux ./HelloWorldPublisherSubscriber publisher 

Windows HelloWorldPublisherSubscriber.exe publisher 

Each time you press <Enter> on a publisher, a new datagram is generated, sent over the network and 

receiver by Subscribers currently online. In case you spawned multiple subscribers, you can see all of them 

receive the data. 

You can modify any values on your custom, IDL-generated data type before sending. 

HelloWorld myHelloWorld; 
myHelloWorld.message("HelloWorld"); 
mp_publisher->write((void*)&myHelloWorld); 

 

Take a look at the examples/ folder for ideas on how to improve this basic application through different 

configuration options, and for examples of advanced Fast RTPS features.  



   

 
eProsima  Fast RTPS User Manual  8 

Library Overview 
You can interact with Fast RTPS at two different levels: 

● Publisher - Subscriber: Simplified abstraction over RTPS. 

● Writer-Reader: Direct control over RTPS endpoints. 

In red, the Publisher-Subscriber layer offers a convenient abstraction for most use cases. It allows you to 

define Publishers and Subscribers associated to a topic, and a simple way to transmit topic data. You may 

remember this from the example we generated in section 2 (Getting Started), where we updated our local 

copy of the topic data, and called a write() method on it. 

In blue, the Writer-Reader layer is closer to the concepts defined in the RTPS standard, and allows for finer 

control, but requires you to interact directly with history caches for each endpoint. 

Fast RTPS architecture 

 

  



   

 
eProsima  Fast RTPS User Manual  9 

Threads 

eProsima Fast RTPS is concurrent and event-based. Each participant spawns a set of threads to take care of 

background tasks such as logging, message reception and asynchronous communication. 

This should not impact the way you use the library: the public API is thread safe, so you can fearlessly call 

any methods on the same participant from different threads. However, it is still useful to know how Fast 

RTPS schedules work: 

● Main thread: Managed by the application. 

● Event thread: Each participant owns one of these, and it processes periodic and triggered events. 

● Asynchronous writer thread: This thread manages asynchronous writes for all participants. Even 

for synchronous writers, some forms of communication must be initiated in the background.  

● Reception threads: Participants spawn a thread for each reception channel, where the concept of 

channel depends on the transport layer (e.g.  an UDP port). 

Events 

There is an event system that enables Fast RTPS to respond to certain conditions, as well as schedule 

periodic activities. Few of them are visible to the user, since most are related to RTPS metadata. However, 

you can define your own periodic events by inheriting from the TimedEvent class. 

 
  



   

 
eProsima  Fast RTPS User Manual  10 

 

Objects and Data Structures 
eProsima Fast RTPS objects are classified by modules. Take a look at the API modules for further details.  

Publisher Subscriber Module 

This module composes the Publisher-Subscriber abstraction we saw in the Library Overview. The concepts 

here are higher level than the RTPS standard.  

● Domain: Used  to create, manage and destroy high-level Participants. 

● Participant: Contains Publishers and Subscribers, and manages their configuration. 

○  ParticipantAttributes: Configuration parameters used in the creation of a Participant. 

○  ParticipantListener: Allows you to implement callbacks within scope of the Participant. 

● Publisher: Sends (publishes) data in the form of topic changes. 

○  PublisherAttributes: Configuration parameters for the construction of a Publisher. 

○  PublisherListener: Allows you to implement callbacks within scope of the Publisher. 

● Subscriber: Receives data for the topics it subscribes to. 

○  SubscriberAttributes: Configuration parameters for the construction of a Subscriber. 

○  SubscriberListener: Allows you to implement callbacks within scope of the Subscriber. 

RTPS Module 

This module directly maps to the ideas defined in the RTPS standard, and allows you to interact with RTPS 

entities directly. It consists of a few sub-modules: 

 RTPS Common 

● CacheChange_t: Represents a change to a topic, to be stored in a history cache. 

● Data: Payload associated to a cache change. May be empty depending on the message and change 

type. 

● Message: Defines the organization of a RTPS Message. 

● Header: Standard header that identifies a message as belonging to the RTPS protocol, and includes 

the vendor id. 

● Sub-Message Header: Identifier for an RTPS sub-message. An RTPS Message can be composed of 

several sub-messages. 

● MessageReceiver: Deserializes and processes received RTPS messages. 

● RTPSMessageCreator: Composes RTPS messages. 

RTPS Domain 

● RTPSDomain: Use it to create, manage and destroy low-level RTPSParticipants. 

● RTPSParticipant: Contains RTPS Writers and Readers, and manages their configuration. 

○  RTPSParticipantAttributes: Configuration parameters used in the creation of an RTPS 

Participant. 

○  PDPSimple: Allows the participant to become aware of the other participants within the 

Network, through the Participant Discovery Protocol. 



   

 
eProsima  Fast RTPS User Manual  11 

○  EDPSimple: Allows the Participant to become aware of the endpoints (RTPS Writers and 

Readers) present in the other Participants within the network, through the Endpoint Discovery 

Protocol. 

○  EDPStatic: Reads information about remote endpoints from a user file. 

○  TimedEvent:  Base class for periodic or timed events. 

 RTPS Reader 

● RTPSReader: Base class for the reader endpoint.  

○  ReaderAttributes: Configuration parameters used in the creation of an RTPS Reader. 

○  ReaderHistory: History data structure. Stores recent topic changes. 

○  ReaderListener: Use it to define callbacks in scope of the Reader. 

RTPS Writer 

● RTPSWriter: Base class for the writer endpoint. 

○  WriterAttributes: Configuration parameters used in the creation of an RTPS Writer. 

○  WriterHistory: History data structure. Stores outgoing topic changes and schedules them to be 

sent. 

 
  



   

 
eProsima  Fast RTPS User Manual  12 

 

Publisher - Subscriber Layer 
High level abstraction over RTPS concepts. 

This layer allows you to set up an application quickly and easily, without having to manage RTPS entities 

directly. You still have the option to interact with the layers below, even if you choose to work at this level. 

Domain 

The Domain class manages creation of Participants, Publishers and Subscribers, and registers topic data. 

Participant 

A participant stores Publishers, Subscribers and Topic Data Types. It also propagates part of its configuration 

to its Publishers and Subscribers. 

ParticipantAttributes contains all configuration parameters for a participant. There is one  you must always 

define: 

● DomainId: This attribute is used to calculate the discovery ports and it is important to separate 

different applications working in the same network. 

// First, we define the configuration options for our Participant. 

ParticipantAttributes PParam; 

Pparam.rtps.setName("participant"); 

Pparam.rtps.builtin.domainId = 80; 

 

// We construct a participant in the domain. 

Participant* p = Domain::createParticipant(PParam); 

 

... 

 

// Last, we eliminate the participant 

Domain::removeParticipant(p); 

Constructing and destroying a participant. 

Publisher 

There are two main things you can do with a publisher: 

● Send (publish) data to any subscribers. 

● Receive a callback on matching with a subscriber. 

Publishers are configured via an instance of the PublisherAttributes structure, which is used by the Domain 

during creation. To define a callback, you must derive from the PublisherListener class. 

Publisher Configuration 

The configuration options in PublisherAttributes are divided into multiple groups. The most commonly used 

options under each group are: 



   

 
eProsima  Fast RTPS User Manual  13 

● PublisherAttributes.topic.topicKind: WITH_KEY or NO_KEY as defined in the RTPS standard. It 

must correspond to the option you chose for your topic data type. 

● PublisherAttributes.topic.topicName: Name of topic. 

● PublisherAttributes.topic.topicDataType: Data type of the topic it publishes to. 

● PublisherAttributes.topic.historyQos: Quality of service options for the history cache. 

● PublisherAttributes.Qos.m_publishMode: Synchronous or asynchronous communication. 

● PublisherAttributes.times.heartbeatPeriod: Period of HEARTBEAT messages as defined in the RTPS 

standard. Reducing the heartbeat period can increase performance for lossy networks. 

● PublisherAttributes.times.nackResponseDelay: Delay before replying to ACKNACK messages as 

defined in the RTPS standard. 

● PublisherAttributes.unicastLocatorList: Defines the unicast input channels the Publisher listens to. 

● PublisherAttributes.multicastLocatorList: Defines the multicast input channels the Publisher listens 

to. 

Note: If you don’t specify any unicast or multicast locators, Fast RTPS will automatically provide UDPv4 

defaults (a multicast and a unicast address). 

 Publisher Callback 

You can define a callback for your publisher, that will trigger when it matches with a subscriber. To do that, 

you must create a class derived from PublisherListener and pass it to the Domain when constructing the 

publisher. 

class MyListener: public PublisherListener 

{ 

    void onPublicationMatched(Publisher* pub, MatchingInfo& info)  

    { 

        if(info.status == MATCHED_MATCHING) 

  cout << "Publication Matched" << endl; 

    } 

}; 

 

int main()  

{ 

    // ... create a participant and define your Publisher Attributes 

    MyListener myListener; 

    auto* myPublisher = Domain::createPublisher(myParticipant, 

                                                myPublisherAttributes, 

                                                &myListener); 

} 

 

  



   

 
eProsima  Fast RTPS User Manual  14 

 

Subscriber 

There are two main things you can do with a subscriber: 

● Receive a callback when the subscribed topic is updated by a publisher. 

● Receive a callback on matching with a publisher. 

Subscribers are configured via an instance of the SubscriberAttributes structure, which is used by the 

Domain during creation.  

Subscriber configuration 

Basic configuration options are similar to the ones described in the Publisher Section.  Consult the API 

documentation for details on more advanced configuration. 

Subscriber Callbacks 

You can define the subscriber callbacks, you must create a class derived from SubscriberListener and pass it 

to the Domain when constructing the subscriber. 

class MyListener: public SubscriberListener 

{ 

    void OnSubscriptionMatched(Subscriber* sub, MatchingInfo& info)  

    { 

        if(info.status == MATCHED_MATCHING) 

  cout << "Subscription Matched" << endl; 

    } 

    void OnNewDataMessage(Subscriber* sub) 

    {  

 if(sub->takeNextData((void*)&m_myData, &m_info)) 

     cout << "Message "<<m_Hello.message()<< " RECEIVED"<<endl; 

    } 

 

}; 

SubscriberListener example 

 

 

 

 

 

 

 

 



   

 
eProsima  Fast RTPS User Manual  15 

Writer - Reader Layer 
Use this layer to control RTPS objects directly.  

Working with the Writer - Reader layer directly is more complex than dealing with the simpler Publisher - 

Subscriber abstraction, but it allows for finer control, and maps more directly to concepts defined in the 

RTPS standard. 

RTPSDomain 

Similar to the Domain class in the Publisher - Subscriber layer, RTPSDomain manages creation and 

destruction of  RTPSParticipants (the lower level equivalent of the Participant) as well as RTPSReader and 

RTPSWriter endpoints. 

RTPSParticipant 

A participant stores RTPSWriters, RTPSReaders, and It propagates part of its configuration to its writers and 

readers. 

To create a RTPSParticipant, you must call RTPSDomain::createRTPSParticipant and pass it a 

RTPSParticipantAttributes object, which contains all necessary configuration.  

RTPSParticipantAttributes PParam; 

Pparam.setName("participant"); 

Pparam.builtin.domainId = 80; 

Pparam.use_IP6_to_send = false; 

 

RTPSParticipant* participant = RTPSDomain::createRTPSParticipant(PParam); 

 

//To remove: 

RTPSDomain::removeParticipant(participant); 

RTPSParticipant construction with simple parameters 

Endpoint registration 

You must manually register any Writer or Reader endpoints with your RTPSParticipant: 

RTPSWriter* writer; 

TopicAttributes tA("topicName","topicType",NO_KEY); 

WriterQos wqos;  

 

... //Change QoS settings 

 

participant->registerWriter(writer,tA,wqos); 

... 

participant->updateWriter(writer,wqos); 

 

This allows endpoints to be created with with minimal configuration, even less than the one needed for 

registration with the built-in protocols.  



   

 
eProsima  Fast RTPS User Manual  16 

RTPSWriter  

Writer History 

Before an RTPSWriter sends data to any readers, the change to the topic data must be stored on a history 

data structure, that will keep track of the latest changes. When working at the Writer - Reader level, you 

can interact with the history structures directly. 

HistoryAttributes hatt; 

WriterHistory * history = new WriterHistory(hatt); 

WriterAttributes watt; 

RTPSWriter* writer = RTPSDomain::createRTPSWriter(rtpsParticipant,watt,hist); 

Creating a writer while keeping a reference to the history 

Writer Attributes 

There are several parameters you can set to define the behaviour of a Writer. Here are the most common: 

● WriterAttributes.endpoint.reliabilityKind: This parameter can be set to RELIABLE (default) or 

BEST_EFFORT. Reliable writers will request feedback from the reader, and attempt to resend any 

lost data. 

● WriterAttributes.endpoint.topicKind: This parameter can be set to NO_KEY (default) and 

WITH_KEY. For WITH_KEY writers, you must provide the KEY of the CacheChange_t before adding it 

to the WriterHistory. Keys allow for multiple separate instances of the same topic. 

● WriterAttributes.endpoint.InputLocatorLists: There are two locator lists associated with an 

RTPSWriter (unicast and multicast). This list is only used in Reliable mode, when the RTPSWriter is 

interested in listening to the matched Readers.  

● WriterAttributes.endpoint.OutputLocatorList: Defines the output communication channels for the 

writer. 

● WriterAttributes.times: Defines the timing of events in RELIABLE mode. For example, the heartbeat 

period. 

 

If you don’t define any input locators, they will be inherited from the parent RTPSParticipant. 

Writer History Attributes 

You can configure the writer history independently through the HistoryAttributes object. Here are the 

most common parameters you will find in it: 

● HistoryAttributes.payLoadMaxSize: Maximum size for a single change, defaults to 500 bytes. 

● HistoryAttributes.initialReserverCaches: Number of initially reserved caches (slots for changes). 

Defaults to 500. 

● HistoryAttributes.MaximumReservedCaches: Maximum number of caches to allow to be reserved 

at any point. Defaults to 0, which means unlimited changes. 

We recommend you give this last parameter a value, to prevent the cache from growing indefinitely in case 

of a spike in network traffic. 

Sending Data with a RTPSWriter 

You can send data by introducing a Change to the WriterHistory. 



   

 
eProsima  Fast RTPS User Manual  17 

// The writer creates an empty change for us. 

CacheChange_t* ch = writer->newCacheChange(ALIVE); 

 

// We fill it with our data. 

ch->serializedPayload->length = sprintf(ch->serializedPayload->data,"My String 

%d",2); 

 

// We place it in the Writer History to get it ready to send. 

history->add_change(ch); 

 

Matched readers 

When a change is added its contents are sent to all matched readers. These readers were either discovered 

via the built-in protocols or added manually by the user. 

Note that there are some configurations that make Writers and Readers incompatible and therefore unable 

to match: A Reliable Writer cannot have a match with a Best-Effort readers and Reliable Reader can not be 

a match of a Best-Effort Writer. 

When matching manually, there is certain information an RTPSWriter needs to know about its matched 

readers. This information is contained in the RemoteReaderAttributes structure: 

RemoteReaderAttributes ratt; 

Locator_t loc; 

loc.set_IP4_address(127,0,0,1); 

loc.port = 22222; 

ratt.endpoint.unicastLocatorList.push_back(loc) 

ratt.guid = c_Guid_Unknown; //For Realiable Writers, you actually need the 

GUID_t 

writer->matched_writer_add(ratt); 

 

 

  



   

 
eProsima  Fast RTPS User Manual  18 

 

RTPSReader  

Reader History 

When receiving a change from a writer, the reader stores it in a ReaderHistory data structure. When 

working at the Writer - Reader level, you can interact with the history structures directly. 

 

class MyReaderListener:public ReaderListener; 

MyReaderListener listen; 

HistoryAttributes hatt; 

ReaderHistory * history = new ReaderHistory(hatt); 

ReaderAttributes ratt; 

RTPSReader* reader = RTPSDomain::createRTPSReader(rtpsParticipant, 

                                                  watt, 

                                                  hist, 

                                                  &listen); 

 

ReaderAttributes 

The ReaderAttributes structure is equivalent to WriterAttributes. 

ReaderHistoryAttributes 

The ReaderHistory element is configured with the exact same structure we used for the writer. 

Reading data from a RTPSReader 

To read received changes, you can use the waitForUnreadMessage() and nextUnreadCache() methods on 

the reader. Later, remove_change() will clear it from the history cache. 

// Blocks until a message is received 

reader->waitForUnreadMessage(); 

 

// Reads a change. 

CacheChange_t* change; 

if(reader->nextUnreadCache(&change)) 

 

//Removes change from the history cache. 

history->remove_change(change); 

 

  



   

 
eProsima  Fast RTPS User Manual  19 

 

Receving data with a ReaderListener 

Data from a RTPSReader can also be received by using a class derived from RTPSReaderListener. An 

RTPSReaderListener calls the user back when a change is received. 

class MyReaderListener: public ReaderListener{ 

   public: 

   MyReaderListener(){} 

   ~MyReaderListener(){} 

   void onNewCacheChangeAdded(RTPSReader* reader,const CacheChange_t* const 

change){ 

       printf("%s\n",change->serializedPayload.data); 

       reader->getHistory()->remove_change((CacheChange_t*)change); 

   } 

} 

 

An RTPSReader is limited to having one ReaderListener attached, and therefore supports one callback. 

 Callbacks on builtin readers 

It is possible for the user to attach his own listener to the Endpoint Discovery Protocol (EDP) RTPSReaders. 

CustomReaderListener *my_readerListenerSub = new(CustomReaderListener); 
CustomReaderListener *my_readerListenerPub = new(CustomReaderListener); 
Std::pair<StatefulReader*,StatefulReader*> EDPReaders = 
      my_participant->getEDPReaders(); 
EDPReaders.first()->setListener(my_readerListenerSub); 
EDPReaders.second()->setListener(my_readerListenerPub); 

 

  



   

 
eProsima  Fast RTPS User Manual  20 

Transport Layer and Network configuration 

Fast RTPS allows you to use different transport layers in the same application, even for the same endpoint. 

Fast RTPS will load an UDPv4 layer by default. It is possible to enable UDPv6, and also to define your own 

transport layer by implementing the class TransportInterface. 

Before configuring a participant, you can supply the following network options: 

● Input channels: Input points where Readers and Writers receive datagrams from. 

● Output channels: Output points the Readers and Writers use to send data. 

● Transport layers to use: Any number of transport layers. 

Remember that these input and output channels will be propagated to the Writers and Readers, unless you 

specify a different set when creating them. 

Configuring Transport Layers 

If you want to disable the default UDPv4 transport, you can do it through an option in the participant 

parameters: 

RTPSParticipantAttributes Pparams; 

testTransport->useBuiltinTransports = false; 

 

Whether you disable it or not, you may also want your participant to use any number of different transport 

layers. Transports (that is, classes that derive from TransportInterface) have a structure associated with 

them called TransportDescriptor, that contains all necessary configuration. 

To add an UDPv6 transport to a participant, you would have to store a UDPv6TransportDescriptor in the 

participant attributes: 

RTPSParticipantAttributes Pparams; 

auto myTransport = std::make_shared<UDPv6Transport::TransportDescriptor>(); 

 

// We change any UDPv6 defaults to our desired values. 

testTransport->receiveBufferSize = 65536; 

 

// By doing this, the participant constructed with these attributes will 

support UDPv6. 

Pparams.userTransports.push_back(myTransport); 

 

examples/C++/UserDefinedTransportExample/ walks through the process of replacing the default layer 

with a differently configured transport. 

 
  



   

 
eProsima  Fast RTPS User Manual  21 

 

Automatic code generation 
eProsima Fast RTPS includes a code generation tool, fastrtpsgen, which translates an IDL specification of a 

topic to C++ data structures compatible with Fast RTPS. 

fastrtpsgen can also generate a sample application using this data type, providing a Makefile to compile it 

on Linux and a Visual Studio project for Windows. 

FASTRTPSGEN use 

fastrtpsgen can be invoked by calling fastrtpsgen on Linux or fastrtpsgen.bat  on Windows. 

fastrtpsgen.bat -d <outputdir> -example <platform> -replace <IDLfile> 

The -replace argument is needed to replace the currently existing files in case the files for the IDL have been 

generated previously. 

When the -example argument is added, the tool will generate an automated example and the files to build 

it for the platform currently invoked. The -help argument provides a list of currently supported Visual 

Studio versions and platforms. 

FASTRTPSGEN output 

fastrtpsgen outputs several files. Assuming the IDL file had the name “MyType”, these files are: 

● MyType.cxx/.h: Type definition. 

● MyTypePublisher.cxx/.h: Definition of the Publisher as well as of a PublisherListener. You must fill 

the needed methods for your application. 

● MyTypeSubscriber.cxx/.h: Definition of the Subscriber as well as of a SubscriberListener. The 

behavior of the subscriber can be altered changing the methods implemented on these files. 

● MyTypePubSubType.cxx/.h: Serialization and Deserialization code for the type. It also defines the 

getKey method in case the topic uses keys. 

● MyTypePubSubMain.cxx: Main file of the example application in case it is generated. 

● Makefiles or Visual studio project files. 

Executable use 

The generated example produces a single executable, which you can run as a Publisher or a Subscriber 

through the “publisher” and “subscriber” command line arguments. eProsima Fast RTPS is known to be 

flagged as suspicious activity by some popular Windows based antivirus firewalls. We recommend you 

configure a special firewall  rule when working with the library. 

 
  



   

 
eProsima  Fast RTPS User Manual  22 

 

Advanced Topics 
eProsima Fast RTPS offers several ways to configure all modules covered in this guide. This section offers an 

overview of the more advanced options you can choose in demanding applications. 

User defined QoS policies 

The examples/C++ folder includes a collection of Quality of Service policies implemented on top of Fast 

RTPS. If you need to offer guarantees at a higher level than what is covered in this guide, these examples 

can be a good place to start.  

Time-Based Filter and Content-Based Filter 

This subscriber rejects any data that does not clear two different filters: 

● passTimeFilter: Accepts a single sample within a given time period. In case the topic is updated 

more frequently than what the subscriber requires, this allows the subscriber to discard the excess. 

● passContentFilter: The data must conform to some criteria based on its content.  For example, in 

case of a Radar Track topic, we could use the track coordinates to filter. 

Ownership Strength 

The Ownership Strength example implements a strength classification for publishers. Subscribers store 

these strength values associated to the publisher IDs, and reject any incoming changes that don’t belong to 

the strongest Publisher. 

When a publisher becomes unmatched, the strength hierarchy is updated by removing the entry 

corresponding to that publisher, so the next strongest one can get priority. 

Deadline  

The Deadline QoS policy guarantees a minimum frequency of received messages. If the reception frequency 

falls below a threshold for a given topic and key, a callback function is called. 

 

  



   

 
eProsima  Fast RTPS User Manual  23 

Large Data 

When defining your custom topic data, the resulting structure may not fit in a single UDP packet, or it may 

be too big for one or more of the transport layers in your application. 

Fast RTPS is able to fragment large data types and reconstruct them at the receiving end. This requires the 

publisher to be configured in asynchronous mode. 

// Our data type is large and we require fragmentation, so... 

 

PublisherAttributes Wparam; 

 

// Allows fragmentation 

Wparam.qos.m_publishMode.kind = ASYNCHRONOUS_PUBLISH_MODE; 

In principle, you don’t need to configure the subscriber to receive fragmented data, it will do it 

automatically. However, it must be prepared to service the input socket fast enough. 

There are two ways to achieve this: 

● Apply a throughput controller on the publisher, to reduce bandwidth and allow the subscriber to 

keep up. This will stop large data bursts from overflowing the receiving socket. 

● Enable reliable QoS. This will allow fragments to be re-sent individually even in case the subscriber 

is not able to keep up. 

 

  



   

 
eProsima  Fast RTPS User Manual  24 

Flow Control 

eProsima Fast RTPS provides a way to control network traffic via Flow Controller objects. In particular, the 

Throughput Controller places a limit on network bandwidth. 

Every Participant and every RTPSWriter contains a built-in throughput controller. This allows you to limit 

bandwidth at two levels, for example placing a short-term restriction on your writer to prevent overflowing 

the readers, and a more relaxed limit for the entire participant. 

These controllers are inactive by default (i.e. they allow an unlimited amount of traffic). To enable one, you 

must give it values through a ThroughputControllerDescriptor: 

WriterAttributes Wparams; 

 

// This controller will allow ~300kb per second. 

ThroughputControllerDescriptor myThroughputController{300000, 1000}; 

Wparams.throughputController = myThroughputController; 

 

The steps required for the participant throughput controller are identical, substituting WriterAttributes for 

ParticipantAttributes. 

The ThroughputControllerDescriptor contains two fields: 

● bytesPerPeriod: The amount of data allowed through this controller in a period of time. 

● periodMillisecs:  length of time during which no more than size bytes will be allowed. 

Flow control is done using a sliding window approach. This guarantees that the restriction holds for any 

span of time; the size/period data rate will be kept for any window of period milliseconds. 

Take a look at examples/C++/FlowControlExample/ to see throughput controllers in action. 

 

  



   

 
eProsima  Fast RTPS User Manual  25 

 

Manual Type Definition 

We have looked at the fastrtpsgen tool, for a simple way to define topic data types and translate them to 

Fast RTPS compatible classes. However, you have the option to define a type manually, for example to have 

more control over serialization and deserialization. 

Here’s how you would define a topic type manually, for a topic encapsulating a single integer value: 

class MyDataType: public TopicDataType 

{ 

public: 

    MyDataType(): 

       m_myData(0), 

       m_typeSize(sizeof(m_myData)), 

       m_isGetKeyDefined(false) 

    { 

        setName("MyType"); 

    } 

    bool serialize(void*data,SerializedPayload_t* payload); 

    bool deserialize(SerializedPayload_t* payload,void * data); 

 

    typedef int RawData; 

}; 

MyDataType.h 

And the implementation: 

 

bool MyDataType::serialize(void*data, SerializedPayload_t* payload){ 

    MyDataType::RawData* myData= (MyDataType::RawData*)data; 

    payload->length = sizeof(MyDataType::RawData); 

    memcpy(payload->data, myData, sizeof(MyDataType::RawData));    

    return true; 

} 

bool MyDataType::deserialize(SerializedPayload_t* payload, void * data){ 

     MyDataType::RawData* myData= (MyDataType::RawData*)data; 

     memcpy(myData,payload->data, sizeof(MyDataType::RawData); 

     return true; 

} 

MyDataType.cpp 

 

 



   

 
eProsima  Fast RTPS User Manual  26 

 

Finally, use the Domain static method below to register the type associated with a participant: 

int main() 

{ 

Participant* part;  

 

// … Construct a participant (see Domain::createParticipant) 

 

TestTypeDataType TestTypeData; 

Domain::registerType(part,(TopicDataType*)&TestTypeData); 

 

//... 

} 

Registering a type. 

 


	Introduction
	What is RTPS?
	What is eProsima Fast RTPS?
	Reference Material
	Document Organization

	Getting Started
	Introduction to the Real Time Publish Subscribe (RTPS) Protocol
	Building your first Application

	Library Overview
	Threads
	Events

	Objects and Data Structures
	Publisher Subscriber Module
	RTPS Module
	RTPS Common
	RTPS Domain
	RTPS Reader
	RTPS Writer


	Publisher - Subscriber Layer
	Domain
	Participant
	Publisher
	Publisher Configuration
	Publisher Callback

	Subscriber
	Subscriber configuration
	Subscriber Callbacks


	Writer - Reader Layer
	RTPSDomain
	RTPSParticipant
	Endpoint registration

	RTPSWriter
	Writer History
	Writer Attributes
	Writer History Attributes
	Sending Data with a RTPSWriter
	Matched readers

	RTPSReader
	Reader History
	ReaderAttributes
	ReaderHistoryAttributes
	Reading data from a RTPSReader
	Receving data with a ReaderListener
	Callbacks on builtin readers

	Transport Layer and Network configuration
	Configuring Transport Layers


	Automatic code generation
	FASTRTPSGEN use
	FASTRTPSGEN output
	Executable use

	Advanced Topics
	User defined QoS policies
	Time-Based Filter and Content-Based Filter
	Ownership Strength
	Deadline

	Large Data
	Flow Control
	Manual Type Definition


